
Challenges in teaching logic programming

V.Sekovanić*, S. Lovrenčić*
* Faculty of Organization and Informatics, Varaždin, Croatia

vlatka.sekovanic@foi.unizg.hr

sandra.lovrencic@foi.unizg.hr

Abstract - Learning Prolog is a challenge on many levels.

In relation to other programming languages, it carries

additional weight in understanding due to its declarative

nature, which is significantly different in relation to

procedural languages. Prolog is an extremely important

programming language because it is the foundation of

artificial intelligence, knowledge-based systems, and other

modern systems. The question arises of how to motivate

students in the best possible way and make it easier for them

to understand Prolog. The literature points to problems in

learning the language, but also to possible approaches to

quality teaching. This paper describes five-year research on

the quality of teaching based on the feedback from students

at the end of the semester. The research is an analysis of

contact teaching and online teaching in the last part. The

results of the research show observed problems in

understanding the SWI-Prolog, but also the efforts of

teachers to try to alleviate the perceived problems of

students in the best possible way. In this way, efforts were

made to raise the quality of teaching from year to year, thus

making it easier for students to understand and adopt the

material related to the basics of the SWI-Prolog.

Keywords - logic programming; SWI-Prolog; teaching

programming

I. INTRODUCTION

Alain Colmerauer and Philippe Roussel developed
logic programming language Prolog in 1972 from a
project focused on processing natural languages [1]. As a
declarative programming language based on first-order
predicate logic [2], it is particularly suitable for solving
problems that can be described by objects and
relationships between them [3]. Prolog is the basis of
artificial intelligence [1,3,4], computational linguistics,
knowledge-based systems, and other modern systems
[5,6,7]. For example, NASA (as one of the leading
institutions in the application of formal methods) uses
Prolog [8,9,10], parts of IBM's Watson supercomputer are
programmed in Prolog [11], as well as a database of the
highly successful Human Genome Project [12,13].
Therefore, no system from the above-mentioned fields
works today without Prolog, which means that knowledge
of this programming language is very important. The
question is why Prolog is not popular and more used
programming language compared to other programming
paradigms? The purpose of this paper is to examine
common problems in understanding the basic concepts of
Prolog, as well as teaching approaches, and to analyse
results of student survey conducted during five year
period of teaching Prolog, which will offer guidelines for

improving materials and delivery of revised course in the
future.

This paper is organized as follows. Chapter 2 reviews
previous research on the identified problems in adopting
the basic concepts of the Prolog and approaches in
teaching. The results of the student survey during five year
period are then presented, focusing on the problems
observed by students in mastering the material (Chapter 3)
and understanding the practical application of the Prolog
(Chapter 4). Chapter 5 concludes the paper.

II. BACKGROUND

It is often emphasized that programming is a
fundamental digital skill necessary for today's and future
careers. Looking at the curricula of European universities,
object-oriented paradigms are most prevalent [14], further
placing the declarative paradigm in an unequal position.
Common problems in teaching programming include [15]
a variety of prior knowledge of students, fear of
programming, problems with programming language
syntax, motivation, learning style, etc.

Another problem with the Prolog is the declarative
paradigm, which implies a completely different way of
thinking than the imperative paradigm. Imperative
pardigm is focused on giving instructions how the
program should perform, whereas declarative paradigm is
oriented on what should be done within the program,
without specifying the steps of the procedure. In other
words, the programmer develops the program based on a
set of facts and rules in the knowledge base describing the
formal specification of the problem, while declarative
programming lanugage, such as Prolog determines the
algorithm during execution by deriving existing facts and
rules, thus providing an answer to the query [12,16,17].

A very simple example in Prolog is the program that
states facts about students, courses and which student
passed which course. The only rule in the program defines
that if a student passed the course, then this student knows
the material of this course. How the program will operate
to determne what material student knows doesn't have to
be specified. According to facts and the rule in the
knowledge base, it can be asked what an individual
student knows:

student (ana).
course (logic_programming).
passed (ana, logic_programming).
knows (Student, Course) :- passed (Student, Course).

? – knows (ana, Course).

Curriculums often start with imperative paradigm and
students later encounter different approach to solve
problems with declarative paradigm [18]. Those that have
good knowledge in former woud likely have more
problems in expressing facts and rules and could try to
write instructions to the program (in above example, how
to determine what a student knows). There are also
different ways of expressing other features of Prolog, such
as cut, negation and recursion [3,5] that also make the
adjustment to a different paradigm difficult.

Teachers (researchers/authors) agree on one thing -
adopting the basic concepts of the Prolog and the
declarative paradigm itself is a problem for students
[12,16,17,19,20,21,22]. Therefore, their approach to
teaching is to identify the problems and develop new and
more interesting teaching approaches to ultimately
facilitate student adoption of the Prolog. Three basic
pedagogical goals in teaching programming languages are
the acquisition of language syntax, the development of
program design skills, and creative thinking [23].

To better understand the problem, Yang, S., & Joy, M.
[22] conducted an interesting study. In their work, they
included and examined the available textbooks used for
teaching Prolog from 1980 to 2005. The results of their
study include the identification of the most common
approaches to teaching Prolog (their characteristics,
advantages and disadvantages) and the attitudes from the
students' point of view. Based on the textbooks studied
(see Fig. 1), they identified three approaches to teaching
Prolog over the 25 years [22]:

• logic-based - deal with abstract theories of
mathematical logic and/or logic programming;
students find this approach most difficult.

• declarative features based - require hands-on
experience, and the Prolog mindset is developed
concretely. Implies specification tool-based
(disliked by students), database-based (students
find this approach the most appropriate),
problem-solving-based (applies to describing and
solving problems; appropriate), system-based
(students find it provides a deeper understanding
of Prolog), known facts and relationships-based
(the most appropriate approach; concrete and
applicable to solving real-world problems).

• program-based - requires both theoretical and
practical knowledge. This approach introduces
students to the basic ideas of Prolog by showing
them examples of programs where students can
quickly see the components and structure of the
program, etc.

The authors emphasize that the most appropriate
approach includes both concrete and abstract components,
especially approaches based on the initial emphasis on the
declarative properties of the Prolog. At the same time, it is
necessary to take into account the different preferences of
the learning approach. Therefore, it is suggested to use a
blended learning strategy to accommodate different
learning styles.

Callear, D. [12] in his paper also analyzes the literature
on Prolog and points out the problem of poor structure of

the material. Namely, the author highlights the most
important conceptual steps in learning Prolog, which,
when presented in the wrong order (as in the cited
literature), interfere with the overall understanding of the
programming language. Some of the topics that are
difficult for students to understand relate to the use of
variables, rules, backtracking, recursion, and lists. He
proposed teaching at appropriate pace with easier topics
first, teaching one topic at a time, returning to topics and
frequent exercises and conducted a research that showed a
positive feedback about proposed structured method from
students.

Motivation is the main factor that can influence the
positive results in learning the Prolog, which is often
emphasized in the papers. First and foremost, the teacher
is the one who must create a motivating environment for
knowledge transfer. Motivation includes applying the
Prolog to interesting and advanced applications in real-
world problems [22], interactive environments [24, 25],
presenting lessons within intelligent tutoring systems
[16,26,27], using expert system shells and application
[28], but also hints about the value of logical
programming skills in the profession [23]. Therefore, it is
important not only to invest in high-quality (innovative)
teaching processes but also to monitor (measure) student
feedback. New high-frequency, automated algorithms for
data collection and analysis could offer new insights into
complex learning processes [29].

III. WHAT IS THE HARDEST TO LEARN?

Prolog was taught at second year of undergraduate
university study during programming exercises at the
course Introduction to Formal Methods at the Faculty of
Organization and Informatics. The programming
environment used was SWI-Prolog, which is free and
widely used. The last year it was taught in full scope was
2020/2021. From academic year 2022/2023
aforementioned couse will be taught as a revised course
Introduction to Knowledge Modeling. Therefore, it was
important to analyse various aspects of the course delivery
with the goal to adjust both theoretical and practical
elements.

To improve the quality of teaching, a student surveys
were already regularly conducted at the end of each
semester in the academic years 2016/2017-2020/2021. In
addition to basic student demographics, the survey
collected information related to - understanding the
material, optimal proportionality of material and class
time, learning preferences, the optimal number of
examples, problems in mastering the material, recognizing

Figure 1. Prolog Teaching Trends by Yang, S., & Joy, M. (2007)

the practical application of the Prolog, and comments and
ideas. As shown in Table 1, a total of 864 students
enrolled in the course during the specified period, while
675 students completed the survey. A much weaker
response to the survey was obtained in the academic year
2020/2021 when classes were held online due to the
COVID-19 pandemic.

In this paper, the focus is on the results examining the
problems of mastering the material (Question 14) and
identifying the areas of the practical application of the
Prolog (Question 15). The perception of problems
students face in learning Prolog is very important, because
programming paradigm differ from those they are familiar
with. Students had to rank problems they face when
learning Prolog on a five point Likert scale, where one
was designating the biggest problem, and five the
smallest. Problems were: syntax, logic/semantics,
reasoning procedure, declarative paradigm, and examples
used in class.

Fig. 2 shows the results of the ranking of problems for
academic year 2017/2018. This year was chosen because
of the largest number of students surveyed within the
years observed (N = 163), although the results for other
years are similarly spaced. This means that the biggest
problem for students is the concept of the declarative
paradigm, while the smallest problems are examples. On
the other hand, Fig. 3 shows a more detailed structure in
terms of the biggest problem in mastering the Prolog
material (looking at the whole five-year period; N = 616).
The biggest problem during all observed years for
students is the declarative paradigm (as confirmed by the
observed research through a review of the literature). It is
followed by logic/semantics, reasoning procedures,
language syntax, while examples1 are mostly ranked as the
biggest problem with a relatively small number of
students. In the online year (2020/2021), the structure is
slightly different. Students were also allowed to express
their opinions, describe their experience of learning Prolog
through the disadvantages and advantages of this teaching

1 The lessons were based on the main example of the Escape

Room, through which the basic concepts of the Prolog are

introduced during the programming exercises. This was

followed by examples of the family tree for the purpose of

gradual independent application of what has been learned,

illustrative examples of problem tasks as part of teamwork, and

an optional example of creating an independent program in the

Prolog for additional credits and whose topic was determined by

the student.

approach, and suggest improvements (point out problems)
that can improve the teaching in next academic year.

To improve the quality of teaching and better
understanding of Prolog, we tried to influence the causes
of the identified problems. The main example of the
treasure hunt was designed in the Escape Room to make it
as interesting as possible for the students while learning
the basics of the Prolog. In other examples, students had
the opportunity to work independently or in teams to
design and write a stand-alone Prolog program for extra
credits. Since the declarative paradigm differs from the
others in the way it solves problems, students were
encouraged to use the same kind of logical thinking when
creating programs as they do when solving problems in
everyday life. During classes, we slowed down the parts
of the material that were critical to understanding Prolog
and emphasized the importance of each segment (syntax,
reasoning procedures, etc.). Student work and
comprehension were systematically monitored. Interactive
e-books with knowledge tests within the H5P module in
Learning Management System (LMS) Moodle were
developed specifically for online instruction (2020/2021).
Because they are used for problems within the SWI-
Prolog editor, work was also possible in a more stable
online environment SWISH. Additional teacher
consultations and demonstrations were available to
students (when possible). Unfortunately, despite all the
motivation and efforts of teachers, Prolog was still largely
declared as an unpopular programming language, as

TABLE I. ANNUAL NUMBER OF ENROLLED AND SURVEYED STUDENTS

Number of

enrolled

students

Number of

completed

surveys

Question 14
Question

15

Percentage

of

completed

surveys

2016 182 154 128 138 84,6

2017 205 177 163 169 86,3

2018 159 126 123 126 79,2

2019 165 144 134 144 87,3

2020 153 74 68 49 48,4

Total 864 675 616 626 78,1

Figure 2. Ranking of problems in mastering the material of the Prolog

(the academic year 2017/2018; N = 163)

Figure 3. Overview of the structure of the biggest problem in mastering

the material of the Prolog in the total amount (2016-2020; N = 616)

shown by the results in the next chapter - recognition of
the fields of the practical application of Prolog.

IV. STUDENT PERCEPTION OF THE PRACTICAL

APPLICATION OF THE PROLOG

Students were also asked the following question:
„Based on your previous education and experience, in
what areas do you see the practical application of the
Prolog / declarative paradigm alone or in combination
with other program paradigms?“ As can be seen in Fig. 4,
in the pooled results for the entire five-year period
observed, 78% of students responded that they do not see
any practical application of Prolog. The remaining 22% of
students see the practical application in the field of
artificial intelligence (7%), computer games (5%),
databases (4%), expert systems (1%), and other
applications (5%), such as Prolog connection with other
programming languages, military or business systems,
virtual reality (VR), etc. The results are similar when
considered individually within the observed years.

Why is Prolog not a popular programming language?
Some of the students' answers are that they do not have
the mindset necessary for the declarative paradigm, that
they do not see the point of applying complicated and
demanding logic/syntax when these examples can be
solved much easier and simpler in other programming
languages (C ++, Python). One of the answers is that the
job market does not require programming skills in Prolog,
so there is no additional motivation to learn Prolog. Of
course, the teoretical part of the course also have influence
on understanding practical application of Prolog and logic
programming languages in general. Teachers usually have
motivational examples at the introductory lectures but
successfull examples of how Prolog is used in practice
should obviously be more emphasized.

Students experience the practical application of Prolog
mainly when they create an independent task and
especially when they write a thesis, in which they have a
task to combine Prolog with some other programming
language (e.g. Prolog and Python via the programming
module Pyswip) and thus realize the advantages of such
symbiosis (shorter code, greater security, etc.). Based on

the students' responses, the conclusion is that perhaps the
focus in the examples should be on combining Prolog with
other programming paradigms, some of which could
certainly impact motivation.

V. CONCLUSION

On one hand, the Prolog is necessary (as the basis of

all systems using artificial intelligence); on the other

hand, it is unpopular (compared to other program

paradigms). The results of the conducted survey not only

reveal problems in mastering the basic concepts of the

Prolog and its general unpopularity but thus also confirm

the observed problems of other studies described in the

literature. It is important to understand the aspects that

cause problems in mastering the basics of the Prolog.

Understanding the challenges allows for a more creative

and innovative approach to teaching (e.g., Platform for

Teaching Logic Programming Using Virtual Worlds

[30]). We also need to be aware that teacher motivation

and effort will not be enough if students are not positively

engaged. Thus, it is complex thinking that involves

understanding problems and eliminating them by

applying possible teaching approaches, appropriately

structuring teaching content, considering different

learning styles, systematically monitoring the results of

learning analysis, and constantly innovating

improvements to promote motivation.

To fully understand problems students face when

learning logic programming, further analysis of other

survey answers will be made. Also, the data about student

activity and grades were collected for all years at LMS

Moodle. This enables analytics of selected data that can

give more answers of students' learning process and

connection to learning outcomes. Information obtained

from further analysis will be used to adjust materials and

delivery of revised course from academic year 2022/2023

onward and to implement apropriate learning analytics

for continuous monitoring and improving of students'

learning process and results.

ACKNOWLEDGMENT

This work has been fully supported by the Croatian
Science Foundation under the project IP-2020-02-5071.

REFERENCES

[1] A. Colmerauer and P. Roussel, „The birth of Prolog“, in History of
programming languages, II pp. 331-367, 1996.

[2] P. Brna, A. Bundy, T. Dodd, et al., „Prolog programming
techniques“, Instr Sci 20, pp. 111–133, 1991.

[3] I. Bratko, „Prolog Programming for Artificial Intelligence“, 4th
Edition, Pearson Education, 2012.

[4] W. Ertel, „Introduction to artificial intelligence“, Springer, 2018.

[5] M. M. Gooley, and B. W. Wah, „System architectures for Prolog
execution“, Structuring Expert Systems Domain Design and
Development, Edited by J. Liebowitz and DA de Salvo, Prentice-
Hall Inc., New Jersey, 171-213, 1989.

[6] A. Lyall, P. Hammond, D. Brough and D. Glover, „BIOLOG-a
DNA sequence analysis system in Prolog“, Nucleic Acids
Research, Volume 12, Issue 1Part2, pp 633–642, 11 January 1984.

Figure 4. Overview of the structure of the answers related to the areas

of the practical application of the Prolog (2016-2020; N = 626)

[7] C. Mungall, „Experiences using logic programming in
bioinformatics“, in International Conference on Logic
Programming, pp. 1-2, Springer Berlin Heidelberg, July 2009.

[8] National Aeronautics and Space Administration NASA – Clarissa,
https://ti.arc.nasa.gov/tech/cas/user-centered-technologies/clarissa/

[9] National Aeronautics and Space Administration NASA - Formal
Methods Symposium, https://shemesh.larc.nasa.gov/nfm2021/

[10] National Aeronautics and Space Administration NASA Langley
Formal Methods, https://shemesh.larc.nasa.gov/fm/fm-what.html

[11] A. Lally and P. Fodor, „Natural Language Processing with Prolog
in the IBM Watson System“, The Association for Logic
Programming (ALP) Newsletter, 9, 2011.

[12] D. Callear, „Teaching Programming: Some Lessons from Prolog“,
in Annual Conference on Teaching and Learning, 2000,
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.176.75
35&rep=rep1&type=pdf

[13] National Human Genome Research Institute,
https://www.genome.gov/human-genome-project

[14] V. Aleksić and M. Ivanović, „Introductory programming subject
in European higher education“, Informatics in Education, 15(2),
pp. 163-182, 2016.

[15] D. Radošević, T. Orehovački and A. Lovrenčić, „New approaches
and tools in teaching programming“, in Central European
Conference on Information and Intelligent Systems, pp. 49-57,
September 2009.

[16] C. K., Looi, “Automatic debugging of Prolog programs in a
Prolog Intelligent Tutoring System”, Instr Sci 20, pp. 215–263,
1991.

[17] A. Stathaki, H. Kondylakis, E. Marakakis and M. Kalogerakis, „i-
Prolog: a web-based intelligent tutoring system for learning
Prolog“, in Interactivity, Game Creation, Design, Learning, and
Innovation, pp. 337-346, Springer, Cham, 2017.

[18] S. A. Rebelsky, P. B. Henderson, A. N. Kumar and F. N.
Springsteel, "Why I do declare! declarative programming in the
undergraduate curriculum.", in SIGCSE technical symposium on
Computer Science Education, pp. 398-399, February 2001.

[19] H. Coelho and J. C. Cotta, „Prolog by example: how to learn,
teach and use it“, Springer-Verlag Berlin Heidelberg, 1988.

[20] A. E. Fluck, „Lessons from discarded computer architectures“, in
IFIP International Conference on the History of Computing, pp.
198-205, Springer Berlin Heidelberg, September 2010.

[21] M.W. Van Someren, „What's wrong? Understanding beginners'
problems with Prolog“, Instr Sci 19, pp. 257–282, 1990.

[22] S. Yang and M. Joy, „Approaches for Learning Prolog
Programming“, Innovation in Teaching and Learning in
Information and Computer Sciences, 6:4, pp. 88-107, 2007.

[23] S. Mohorovicic and V. Strcic, „An overview of computer
programming teaching methods“, in Central European Conference
on Information and Intelligent Systems, pp. 47-52, September
2011.

[24] M. Jebe, S. Münker, J. Gnyp and W. Petersen, „eLearning-
Plattform zur Unterstützung des Erlernens des logischen
Programmierens“, in DELFI 2021, pp. 351-352, September 2021.

[25] J. Wielemaker, T. Schrijvers, M. Triska and T. Lager, „Swi-
Prolog“, Theory and Practice of Logic Programming, 12(1-2), pp.
67-96, 2012.

[26] G. J. Nalepa and I. Wojnicki, “Concept of an Interactive Web
Portal for Teaching Prolog“, in FLAIRS Conference, pp. 240-244,
2008.

[27] D. I. Popov and O. Y. Lazareva, „A Knowledge Testing
Production Model Based on a Cognitive Map for SWI-Prolog
Applications“, International Journal of Emerging Technologies in
Learning (iJET), 10(4), 2015.

[28] D. Merritt, “Building expert systems in Prolog”, Springer, 1989.

[29] P. Blikstein, M. Worsley, C. Piech, M. Sahami, S. Cooper and D.
Koller, „Programming pluralism: Using learning analytics to
detect patterns in the learning of computer programming“, Journal
of the Learning Sciences, 23(4), pp. 561-599, 2014.

[30] S. Vosinakis, P. Koutsabasis and G. Anastassakis, „A platform for
teaching logic programming using virtual worlds“, in 2014 IEEE
14th International Conference on Advanced Learning
Technologies, pp. 657-661, IEEE, July 2014.

